METALLO β-LACTAMASE DETECTION IN PSUEDOMONAS AERUGINOSA ISOLATES FROM VARIOUS CLINICAL SAMPLES IN NCR REGION.

  • Jyoti Pal Phd Student Department of Microbiology, Santosh Medical College, Ghaziabad, U.P
  • Dakshina Bisht Professor and Head, Department of Microbiology Santosh Medical College, Ghaziabad, U.P
  • Agarwal R Associate Professor Department of Microbiology Santosh Medical College, Ghaziabad ,U.P
Keywords: Metallo-β-lactamase (MBL), Pseudomonas aeruginosa, Carbapenem, Imipenem (IMP), Double Disc Synergy Test (DDST)

Abstract

Background: Acquired drug resistance has been reported in Pseudomonas spp by the production of plasmid-mediated AmpC-β-lactamase, Extended Spectrum-β-lactamase (ESBL) and Metallo-β-lactamase (MBL) enzymes. Carbapenems, being the most potent and reserved drug for treating infections caused by multi-drug resistant bacteria especially Pseudomonas spp is under threat due to the emergence of MBL producing Pseudomonas. aeruginosa. Thus the study was undertaken to study Metallo- β-lactamase (MBL) production among isolates of P. aeruginosa to know their dissemination and thereby proper and judicious selection of antibiotics. Methods: 112 isolates of P. aeruginosa were obtained from various clinical samples that were subjected to susceptibility testing to antipseudomonal drugs as per CLSI guidelines. Isolates resistant to imipenem were screened for MBL production by Imepenem- EDTA Double Disc Synergy Test (DDST) test. Result: Of the 112 isolates of P.aeruginosa, 22% strains were imipenem resistant and 16% strains were MBL producers. Conclusion: MBL mediated carbapenem resistance in P. aeruginosa is a cause for concern in the therapy of critically ill patients. Simple DDST can be done to help to monitor these emerging resistant determinants.

Downloads

Download data is not yet available.

References

1. Adachi JA, Perego C, Graviss L, Dvorak T, Hachem R, Chemaly RF, et al. The role of interventional molecular epidemiology in controlling clonal clusters of multidrug-resistant Pseudomonas aeruginosa in critically ill cancer patients. Am J Infect Control. 2009;37(6):442–6.
2. Hemalatha V, Uma S & Vijaylakshmi K. Detection of metallo beta-lactamase-producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res .2005;122: 148-152.
3. Supriya U, Malay R S, Amitabha B. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Ctries. 2010; 4(4): 239-242.
4. Bardford PA. Extended-spectrum β-lactamase in the 21st century: The characterization, epidemiology and the detection of this important resistance threat. Clin.Microbiol.2001;14:933-951.
5. Jaykumar S, Appalraju B. The prevalence of multi and pan drug-resistant Pseudomonas aeruginosa with respect to ESBL and MBL in a tertiary care hospital. Indian J Pathol Microbiol. 2007;50 (4): 922-25.
6. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β- lactamases The quiet before the strom?. Clin Microbio Rev. 2005; 18: 30625.
7. Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species.Expert Opin Investig Drugs. 2008;17:131-43.
8. Struelens MJ, Monnet DL, Magiorakos AP, Santos O'Connor F, Giesecke J. The European NDM-1 Survey Participants. New Delhi metallo-beta-lactamase producing Enterobacteriaceae: Emergence and response in Europe. Euro Surveill.2010;15.pii:19716.
9. Kouda S, Ohara M, Onodera M, Fujiue Y, Sasaki M, Kohara T, et al. Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother .2009;64:46-51.
10. Mariana Castanheira JM. Carbapenem resistance among Pseudomonas aeruginosa Strains from India. Evidence for Nationwide Endemicity of Multiple Metallo-beta-lactamase clones (VIM-2,-5,-6-11 and the newly characterized VIM-18).Antimicrob Agents Chemother. 2009;531:225-7.
11. Manoharan A, Chatterjee S, Mathai D, SARI Study Group. Detection and characterization of metallo beta lactamases producing Pseudomonas aeruginosa. Indian J Med Microbiol. 2010;28:241-4.
12. Dugal S, Fernandes A. Carbapenem hydrolyzing metallo-betâ lactamases: A Review. Int J Curr Pharma Res. 2011;3:9-16.
13. Wayne PA: Clinical and Laboratory Standards Institute; 2009. CLSI. Performance Standards for Antimicrobial Susceptibility Testing: Nineteeneth Informational Supplement. CLSI document M100-S19.
14. Clinical and Laboratory standards institute (CLSI) Performance standards for antimicrobial susceptibility testing, 16th informational supplements. CLSI Document M2-A9, Wayne PA:2006.
15. Yong D,Lee K, Yum JH , Shin HB , Rossolini G M, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase producing clinical isolates of Pseudomonas spp and Acinetbacter spp. J.Clin.Microbial.2002;40:3798-3801.
16. Maltezou HC. Metallo-lactamases in Gram-negative bacteria: introducing the era of pan-resistance?Int J Antimicrob Agents. 2009;33:e1–7.
17. Andréa L, Libera M. Dalla C et al. Comparison of phenotypic tests for the detection of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa Enferm Infecc Microbiol Clin. 2014; 32(10):625–630.
18. Tam VH, Chang KT, Abdelraouf K, Brioso CG, Ameka M, MaCarkey LA, et al. Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010; 45(3):1160-64.
19. Behera B, Mathur P, Das A, Kapil A, Sharma V. An evalution of four different phenotypic techniques for detection of metallo-β-lactamase producing Pseudomonas aeruginosa. Indian J Med Microbiol. 2008; 26:233-7.
20. Gupta E, Mohanty S, Sood S, Dhawan B, Das BK, Kapil A. Emerging resistance to carbapenems in a tertiary care hospital in north India. Ind J Med Res. 2002;124:95-8.
21. Nordmann P, Poriel L. Emerging carbapenems in gram-negative aerobes. Clin Microbial Infect. 2002;115:153-7.
22. Franklin C, Liolios L, Peleg AY. Phenotypic detection of carbapenem- susceptible metall-β-lactamases producing Gram-negative bacilli in the clinical laboratory. J Clin Microbiol. 2006;44:3139-44.
23. Agamy Al, Mohamed H, Shibl, Atef M, Tawfik, Abdulkader F et al. Extended-spectrum and Metallo-beta-lactamases among ceftazidime-resistant Pseudomonas aeruginosa in Riyadh, Saudi Arabia. Journal of chemotherapy. 2012;24(2):97-100(4).
24. Simit HK, Anuradha S de et al. Prevalence and risk factors of metallo e-lactamase producing Pseudomonas aeruginosa and acinetobacter species in burns and surgical wards in a tertiary care hospital. Journal of laboratory physicions. 2012;vol-4: issue-1.
25. Shashikala, Kanungo R, Srinivasan S, Devi S. Emerging resistance to cabapenem in hospital acquired pseudomonas infection: a cause of concern. Indian j pharmacol. 2006; 38:287-88.
26. Ami V, Nikhil K, Manasi K, Pallavi B & Jyotsana D. Incidence of Metallo beta lactamase producing pseudomonas aeruginosa in icu patients. Indian j med res.2008;127 pp :398-402.
27. Vasundhara. P, Sreenivasulu. P et al. Prevalence of Metallo-beta lactamases producing Pseudomonas aeruginosa among the clinical isolates: A study from tertiary care hospital. Int. J. Curr. Microbiol.App.Sci.2015;4(4):955-961.
28. Saderi H, Lotfalipour H et al. Detection of Metallo- Beta-Lactamase producing Pseudomonas aeruginosa isolated from burn patients in Teheran. Iran. Lab Med .2010; 41:609-12.
29. Weber J, McManus A. Infection control in burn patients .Burns 200; 30: A16-24.
How to Cite
1.
Pal J, Bisht D, Agarwal R. METALLO β-LACTAMASE DETECTION IN PSUEDOMONAS AERUGINOSA ISOLATES FROM VARIOUS CLINICAL SAMPLES IN NCR REGION. Med. res. chronicles [Internet]. 2015Aug.10 [cited 2024May5];2(4):539-45. Available from: https://medrech.com/index.php/medrech/article/view/119
Section
Original Research Article