BIOFILM PRODUCTION AMONG BACTERIAL ISOLATES FROM CLARIAS GARIEPINUS
Abstract
Isolation and characterization of bacteria was carried out on three organs (skin, gut and gills) of cultivated African catfish (Clarias gariepinus). A total of sixty six bacteria were isolated; 63 (95.5%) were Gram negatives and 3 (4.5%) were Gram positives. Total average bacterial count recorded gut at 7.1 x 105 cfu/ml; gills at 6.3 x 105 cfu/ml; and skin at 1.3 x 105 cfu/ml. Escherichia coli had the highest occurrence at 17 (26%), followed by Klebsiella oxytoca at 10 (15%) of all isolates. Forty nine (73.1%) of all isolates were positive for biofilm production on CRA, while 36 (54.5%) were haemolytic on blood agar. Biofilm and haemolysin production are known pathogenic factors of bacteria in man and animals, hence, a need for very good hygiene level in cultivation and consumption of fish and its products.
Downloads
References
2. Akoachere, J. F., Bugbe, R. N., Oben, B. O., Ndip, L. M., and Ndip, R. N. Phenotypic characterization of human pathogenic bacteria in fish from coastal waters of South West Cameroun: Public health implication. Review on Environmental Health, 26, 2009, 147-156.
3. Amorena, B., Gracia, E., Monzóna, M., Leivab, J., Oteizab, C., Péreza, M., Alabarta, J., Hernández-Yagoc, J. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. Journal Antimicrobial Chemotherapy, 44, 1999,43–55.
4. Arciola, C. R., Baldassarri, L., Montanaro, L. Presence of icaA and icaD and slime production in a collection of staphylococcal strains from catheterassociated infections. Journal of Clinical Microbiology, 39, 2001, 2151–2156.
5. Arciola, C. R., Campoccia, D., Gamberini, S., Cernellati, M., Donati, E., Montanaro, L. Detection of slime production by means of an optimized congo red agar plate based on a colorimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials. 23, 2002,4233–4239.
6. Baldassarri, L., Cecchini, R., Bertuccini, L., Ammendolia, M. G., Iosi, F., Arciola, C. R., Montanaro, L., Di Rosa, R., Gherardi, G., Dicuonzo, G., Orefici, G., and Creti, R. Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Medical Microbiology and Immunology, 190,2001, 113–120.
7. Barrow, G. I. and Feltham, R. K. A. Cowan and Steel’s Manual for the Identification of Medical Bacteria. Cambridge University Press, London. pp 331, 1993.
8. Brenkman, S. J., Munford, S. L., House, M., and Patterson, C. Establishing baseline information on the geographic distribution of fish pathogens endemic in
salmonids prior to dam removal and subsequent recolonization by anadromous fish in the Elwha River, Washington. Northwest Science 82, 2008, 142-152.
9. Christensen, B. E. The role of extracellular polysaccharides in biofilms. Journal of Biotechnology, 10, 1989,181–202.
10. Costerton, I. W., Cheng K. I., Geesey, G. G., Ladd, T. I., Nickel, N. C. Bacterial biofilms in nature and disease. Annual Review of Microbiology. 41, 1987, 435–64.
11. Criado, M. T., Suarez, B., Ferreros, C. M. The importance of bacterial adhesion in dairy industry. Food Technology, 48(2), 1994, 123-126.
12. Deighton, M., Borland, R. Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infection and Immunity, 61, 1993, 4473–4479.
13. Duddridge, J. E., Pritchard, A. M. Factors affecting the adhesion of bacteria to surfaces. Proceeding of the conference on Microbial Corrosion. Teddington, 1983, 28-35.
14. Freeman, D. J., Falkiner, F. R., Keane, C. T. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol, 42, 1989, 872–874.
15. Gideon Informatics. GideonMicrobiology-Identify Bacteria. Web. www.gideononline.com (1994-2015).
16. Holt, I. G., Krieg, N. R., Sneath, P. H., Stanley, J. J., and Williams, S. T. Bergey’s Manual of Determinative Bacteriology. Lippincott Williams and Wikins, Philadelphia, PA. 2000
17. Jain, A., Argawal, A. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. Journal of Microbiological Methods, 76, 2009, 88-92.
18. Jefferson, K. K. What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236, 2004, 163-173.
19. Loch, T. P., Scribner, K., Tempelman, R., Whelan, G., and Faisal, M. Bacterial infections of Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to gamete collecting weirs in Michigan. Journal of Fish Diseases 35(1), 2012, 39-50.
20. Loo, C.Y. Oral Streptococcal genes that encode biofilm formation. In: Medical Implications of Biofilms (Wilson, M. and Devine, D., Eds.), 1, 2003, 212–227.
21. Marques, C.,S. Formação de Biofilmes por Staphylococcus aureus na superfície de aço inoxidável e vidro e sua resistência a sanificantes químicos. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). UFLA (Universidade Federal de Lavras). 2005
22. Mettler, E., Carpentier, B. Variations over time of microbial load and physicochemical properties of floor materials after cleaning in food industry premises. Journal of Food Protection,61, 1998, 57–65.
23. Okaeme, A. N. Fish diseases prevention and control paper presented at the VCN professional country education seminar Akure, 2006, 1- 17.
24. Parizzi, S. Q. F. Adesão bacteriana emdiferentes superfícies avaliada pela Microscopia de Epifluorescência e Contagem em Placas. Viçosa, Brasil. (M.Sc. Dissertation. Ciência eTecnologia de Alimentos, UFV). 1999.
25. Pompermayer, D. M. C., Gaylarde, C. C. The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and Escherichia coli to polypropylene. Food Microbiology, 17(4), 2000, 361-365.
26. Shawn, P. Diseases of Fish. Disease in Nature part 10 Aquarium.net Article Index (0897). http://www.reefs.org/library/aquarium_net/0897/0897_4.html, 1997
27. Shewan, J. M., Hobbs, G. The Bacteriology of fish spoilage and preservation. In progress in Industrial Microbiology. (ed., by D. J. D. Hockenhull) L Liffe books Ltd, London. 1990
28. Shewan, J. M. The Microbiology of sea water fish vol.1. Academic press, Newyork. pp. 487 – 560. 2000
29. Starliper, C. E. Isolation of Serratia liquefaciens as a pathogen of Arctic char, Salvelinus alpinus (L). Journal of Fish Diseases 24, 2001, 53-56.
30. Sugita, H. N., Matsuo, Y., Hirose, M., Iwato, Y., Deguchi, N. Vibrio species Strain NM 10 with an inhibitory effect against Pasteurella piscicida form the intensive of Japanese coastal fish. Applied Environmental Microbiology, 63, 1997, 4986 – 4989.
31. Sugita, H. R., Okano, Y., Suzuki, D., Iwai, M., Mizukami, N., Akinyama, S., Matsura, Y. Antibacterial abilities of intestinal bacteria from larva and juvenile Japanese Flounder against fish pathogens. Fisheries Science, 68, 2002, 1004-1011.
32. Suihko, M. L., Salo, S., Niclasen, O., Gudbjornsdottir, B., Torkelsson, G., Bredholt, S., Sjoberg, A. M., Gustavsson, P. Characterization of Listeria monocytogenes isolates from meat, poultry and seafood industries by automated ribotyping. International Journal of Food Microbiology, 72, 2002,137–146.
33. Vuong, C., Otto, M. Staphylococcus epidermidis infections. Microbes and Infection, 4, 2002, 481–489.
34. William, J. T., Michael, H. D. Aquatic Biotechnology. In: Introduction to Biotechnology. Berth WR (ed.). Pearson Publications. New York. pp231- 259. 2009
35. Yagoub, S. O. Isolation of Enterobacteriaceae and Pseudomonas spp. from raw fish sold in fish market in Khartoum state. Journal of Bacteriology Research, 1(7), 2009, 085-088.
36. Ziebuhr, W., Lossner, I., Krimmer, V., Hacker, J. Methods to detect and analyze phenotypic variation in biofilm-forming staphylococci. Medical Enzymology, 336, 2001, 195–205